Tuesday, September 29, 2009

A JavaScript implementation of the SHA family of hashes

/* A JavaScript implementation of the SHA family of hashes, as defined in FIPS PUB 180-2
* as well as the corresponding HMAC implementation as defined in FIPS PUB 198a
* Version 1.2 Copyright Brian Turek 2009
* Distributed under the BSD License
* See http://jssha.sourceforge.net/ for more information
*
* Several functions taken from Paul Johnson
*/

/*
* Int_64 is a object/container for 2 32-bit numbers emulating a 64-bit number
*
* @constructor
* @param {Number} msint_32 The most significant 32-bits of a 64-bit number
* @param {Number} lsint_32 The least significant 32-bits of a 64-bit number
*/
function Int_64(msint_32, lsint_32) {
this.highOrder = msint_32;
this.lowOrder = lsint_32;
}

/*
* jsSHA is the workhorse of the library. Instantiate it with the string to be hashed
* as the parameter
*
* @constructor
* @param {String} srcString The string to be hashed
* @param {String} inputFormat The format of srcString, ASCII or HEX
*/
function jsSHA(srcString, inputFormat) {

/*
* Configurable variables. Defaults typically work
*/
jsSHA.charSize = 8; // Number of Bits Per character (8 for ASCII, 16 for Unicode)
jsSHA.b64pad = ""; // base-64 pad character. "=" for strict RFC compliance
jsSHA.hexCase = 0; // hex output format. 0 - lowercase; 1 - uppercase

var sha1 = null;
var sha224 = null;
var sha256 = null;
var sha384 = null;
var sha512 = null;

/*
* Convert a string to an array of big-endian words
* If charSize is ASCII, characters >255 have their hi-byte silently ignored.
*
* @param {String} str String to be converted to binary representation
* @return Integer array representation of the parameter
*/
var str2binb = function (str) {
var bin = [];
var mask = (1 << jsSHA.charSize) - 1;
var length = str.length * jsSHA.charSize;

for (var i = 0; i < length; i += jsSHA.charSize) {
bin[i >> 5] |= (str.charCodeAt(i / jsSHA.charSize) & mask) <<
(32 - jsSHA.charSize - i % 32);
}

return bin;
};

/*
* Convert a hex string to an array of big-endian words
*
* @param {String} str String to be converted to binary representation
* @return Integer array representation of the parameter
*/
var hex2binb = function (str) {
var bin = [];
var length = str.length;

for (var i = 0; i < length; i += 2) {
var num = parseInt(str.substr(i, 2), 16);
if (!isNaN(num)) {
bin[i >> 3] |= num << (24 - (4 * (i % 8)));
} else {
return "INVALID HEX STRING";
}
}

return bin;
};

var strBinLen = null;
var strToHash = null;

// Convert the input string into the correct type
if ("HEX" === inputFormat) {
if (0 !== (srcString.length % 2)) {
return "TEXT MUST BE IN BYTE INCREMENTS";
}
strBinLen = srcString.length * 4;
strToHash = hex2binb(srcString);
} else if (("ASCII" === inputFormat) ||
('undefined' === typeof(inputFormat))) {
strBinLen = srcString.length * jsSHA.charSize;
strToHash = str2binb(srcString);
} else {
return "UNKNOWN TEXT INPUT TYPE";
}

/*
* Convert an array of big-endian words to a hex string.
*
* @private
* @param {Array} binarray Array of integers to be converted to hexidecimal representation
* @return Hexidecimal representation of the parameter in String form
*/
var binb2hex = function (binarray) {
var hex_tab = jsSHA.hexCase ? "0123456789ABCDEF" : "0123456789abcdef";
var str = "";
var length = binarray.length * 4;

for (var i = 0; i < length; i++) {
str += hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8 + 4)) & 0xF) +
hex_tab.charAt((binarray[i >> 2] >> ((3 - i % 4) * 8)) & 0xF);
}

return str;
};

/*
* Convert an array of big-endian words to a base-64 string
*
* @private
* @param {Array} binarray Array of integers to be converted to base-64 representation
* @return Base-64 encoded representation of the parameter in String form
*/
var binb2b64 = function (binarray) {
var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
var str = "";
var length = binarray.length * 4;
for (var i = 0; i < length; i += 3)
{
var triplet = (((binarray[i >> 2] >> 8 * (3 - i % 4)) & 0xFF) << 16) |
(((binarray[i + 1 >> 2] >> 8 * (3 - (i + 1) % 4)) & 0xFF) << 8) |
((binarray[i + 2 >> 2] >> 8 * (3 - (i + 2) % 4)) & 0xFF);
for (var j = 0; j < 4; j++) {
if (i * 8 + j * 6 > binarray.length * 32) {
str += jsSHA.b64pad;
} else {
str += tab.charAt((triplet >> 6 * (3 - j)) & 0x3F);
}
}
}
return str;
};

/*
* The 32-bit implementation of circular rotate left
*
* @private
* @param {Number} x The 32-bit integer argument
* @param {Number} n The number of bits to shift
* @return The x shifted circularly by n bits
*/
var rotl_32 = function (x, n) {
if (n < 32) {
return (x <<>>> (32 - n));
} else {
return x;
}
};

/*
* The 32-bit implementation of circular rotate right
*
* @private
* @param {Number} x The 32-bit integer argument
* @param {Number} n The number of bits to shift
* @return The x shifted circularly by n bits
*/
var rotr_32 = function (x, n) {
if (n < 32) {
return (x >>> n) | (x << (32 - n));
} else {
return x;
}
};

/*
* The 64-bit implementation of circular rotate right
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @param {Number} n The number of bits to shift
* @return The x shifted circularly by n bits
*/
var rotr_64 = function (x, n) {
if (n < 32) {
return new Int_64(
(x.highOrder >>> n) | (x.lowOrder << (32 - n)),
(x.lowOrder >>> n) | (x.highOrder << (32 - n))
);
} else if (n === 32) { // Apparently in JS, shifting a 32-bit value by 32 yields original value
return new Int_64(x.lowOrder, x.highOrder);
} else {
return rotr_64(rotr_64(x, 32), n - 32);
}
};

/*
* The 32-bit implementation of shift right
*
* @private
* @param {Number} x The 32-bit integer argument
* @param {Number} n The number of bits to shift
* @return The x shifted by n bits
*/
var shr_32 = function (x, n) {
if (n < 32) {
return x >>> n;
} else {
return 0;
}
};

/*
* The 64-bit implementation of shift right
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @param {Number} n The number of bits to shift
* @return The x shifted by n bits
*/
var shr_64 = function (x, n) {
if (n < 32) {
return new Int_64(
x.highOrder >>> n,
x.lowOrder >>> n | (x.highOrder << (32 - n))
);
} else if (n === 32) { // Apparently in JS, shifting a 32-bit value by 32 yields original value
return new Int_64(0, x.highOrder);
} else {
return shr_64(shr_64(x, 32), n - 32);
}
};

/*
* The 32-bit implementation of the NIST specified Parity function
*
* @private
* @param {Number} x The first 32-bit integer argument
* @param {Number} y The second 32-bit integer argument
* @param {Number} z The third 32-bit integer argument
* @return The NIST specified output of the function
*/
var parity_32 = function (x, y, z) {
return x ^ y ^ z;
};

/*
* The 32-bit implementation of the NIST specified Ch function
*
* @private
* @param {Number} x The first 32-bit integer argument
* @param {Number} y The second 32-bit integer argument
* @param {Number} z The third 32-bit integer argument
* @return The NIST specified output of the function
*/
var ch_32 = function (x, y, z) {
return (x & y) ^ (~x & z);
};

/*
* The 64-bit implementation of the NIST specified Ch function
*
* @private
* @param {Int_64} x The first 64-bit integer argument
* @param {Int_64} y The second 64-bit integer argument
* @param {Int_64} z The third 64-bit integer argument
* @return The NIST specified output of the function
*/
var ch_64 = function (x, y, z) {
return new Int_64(
(x.highOrder & y.highOrder) ^ (~x.highOrder & z.highOrder),
(x.lowOrder & y.lowOrder) ^ (~x.lowOrder & z.lowOrder)
);
};

/*
* The 32-bit implementation of the NIST specified Maj function
*
* @private
* @param {Number} x The first 32-bit integer argument
* @param {Number} y The second 32-bit integer argument
* @param {Number} z The third 32-bit integer argument
* @return The NIST specified output of the function
*/
var maj_32 = function (x, y, z) {
return (x & y) ^ (x & z) ^ (y & z);
};

/*
* The 64-bit implementation of the NIST specified Maj function
*
* @private
* @param {Int_64} x The first 64-bit integer argument
* @param {Int_64} y The second 64-bit integer argument
* @param {Int_64} z The third 64-bit integer argument
* @return The NIST specified output of the function
*/
var maj_64 = function (x, y, z) {
return new Int_64(
(x.highOrder & y.highOrder) ^ (x.highOrder & z.highOrder) ^ (y.highOrder & z.highOrder),
(x.lowOrder & y.lowOrder) ^ (x.lowOrder & z.lowOrder) ^ (y.lowOrder & z.lowOrder)
);
};

/*
* The 32-bit implementation of the NIST specified Sigma0 function
*
* @private
* @param {Number} x The 32-bit integer argument
* @return The NIST specified output of the function
*/
var sigma0_32 = function (x) {
return rotr_32(x, 2) ^ rotr_32(x, 13) ^ rotr_32(x, 22);
};

/*
* The 64-bit implementation of the NIST specified Sigma0 function
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @return The NIST specified output of the function
*/
var sigma0_64 = function (x) {
var rotr28 = rotr_64(x, 28);
var rotr34 = rotr_64(x, 34);
var rotr39 = rotr_64(x, 39);

return new Int_64(
rotr28.highOrder ^ rotr34.highOrder ^ rotr39.highOrder,
rotr28.lowOrder ^ rotr34.lowOrder ^ rotr39.lowOrder);
};

/*
* The 32-bit implementation of the NIST specified Sigma1 function
*
* @private
* @param {Number} x The 32-bit integer argument
* @return The NIST specified output of the function
*/
var sigma1_32 = function (x) {
return rotr_32(x, 6) ^ rotr_32(x, 11) ^ rotr_32(x, 25);
};

/*
* The 64-bit implementation of the NIST specified Sigma1 function
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @return The NIST specified output of the function
*/
var sigma1_64 = function (x) {
var rotr14 = rotr_64(x, 14);
var rotr18 = rotr_64(x, 18);
var rotr41 = rotr_64(x, 41);

return new Int_64(
rotr14.highOrder ^ rotr18.highOrder ^ rotr41.highOrder,
rotr14.lowOrder ^ rotr18.lowOrder ^ rotr41.lowOrder);
};

/*
* The 32-bit implementation of the NIST specified Gamma0 function
*
* @private
* @param {Number} x The 32-bit integer argument
* @return The NIST specified output of the function
*/
var gamma0_32 = function (x) {
return rotr_32(x, 7) ^ rotr_32(x, 18) ^ shr_32(x, 3);
};

/*
* The 64-bit implementation of the NIST specified Gamma0 function
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @return The NIST specified output of the function
*/
var gamma0_64 = function (x) {
var rotr1 = rotr_64(x, 1);
var rotr8 = rotr_64(x, 8);
var shr7 = shr_64(x, 7);

return new Int_64(
rotr1.highOrder ^ rotr8.highOrder ^ shr7.highOrder,
rotr1.lowOrder ^ rotr8.lowOrder ^ shr7.lowOrder);
};

/*
* The 32-bit implementation of the NIST specified Gamma1 function
*
* @private
* @param {Number} x The 32-bit integer argument
* @return The NIST specified output of the function
*/
var gamma1_32 = function (x) {
return rotr_32(x, 17) ^ rotr_32(x, 19) ^ shr_32(x, 10);
};

/*
* The 64-bit implementation of the NIST specified Gamma1 function
*
* @private
* @param {Int_64} x The 64-bit integer argument
* @return The NIST specified output of the function
*/
var gamma1_64 = function (x) {
var rotr19 = rotr_64(x, 19);
var rotr61 = rotr_64(x, 61);
var shr6 = shr_64(x, 6);

return new Int_64(
rotr19.highOrder ^ rotr61.highOrder ^ shr6.highOrder,
rotr19.lowOrder ^ rotr61.lowOrder ^ shr6.lowOrder);
};

/*
* Add two 32-bit integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*
* @private
* @param {Number} x The first 32-bit integer argument to be added
* @param {Number} y The second 32-bit integer argument to be added
* @return The sum of x + y
*/
var safeAdd_32_2 = function (x, y) {
var lsw = (x & 0xFFFF) + (y & 0xFFFF);
var msw = (x >>> 16) + (y >>> 16) + (lsw >>> 16);

return ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
};

/*
* Add four 32-bit integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*
* @private
* @param {Number} a The first 32-bit integer argument to be added
* @param {Number} b The second 32-bit integer argument to be added
* @param {Number} c The third 32-bit integer argument to be added
* @param {Number} d The fourth 32-bit integer argument to be added
* @return The sum of a + b + c + d
*/
var safeAdd_32_4 = function (a, b, c, d) {
var lsw = (a & 0xFFFF) + (b & 0xFFFF) + (c & 0xFFFF) + (d & 0xFFFF);
var msw = (a >>> 16) + (b >>> 16) + (c >>> 16) + (d >>> 16) + (lsw >>> 16);

return ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
};

/*
* Add five 32-bit integers, wrapping at 2^32. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*
* @private
* @param {Number} a The first 32-bit integer argument to be added
* @param {Number} b The second 32-bit integer argument to be added
* @param {Number} c The third 32-bit integer argument to be added
* @param {Number} d The fourth 32-bit integer argument to be added
* @param {Number} e The fifth 32-bit integer argument to be added
* @return The sum of a + b + c + d + e
*/
var safeAdd_32_5 = function (a, b, c, d, e) {
var lsw = (a & 0xFFFF) + (b & 0xFFFF) + (c & 0xFFFF) + (d & 0xFFFF) +
(e & 0xFFFF);
var msw = (a >>> 16) + (b >>> 16) + (c >>> 16) + (d >>> 16) +
(e >>> 16) + (lsw >>> 16);

return ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);
};

/*
* Add two 64-bit integers, wrapping at 2^64. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*
* @private
* @param {Int_64} x The first 64-bit integer argument to be added
* @param {Int_64} y The second 64-bit integer argument to be added
* @return The sum of x + y
*/
var safeAdd_64_2 = function (x, y) {
var lsw = (x.lowOrder & 0xFFFF) + (y.lowOrder & 0xFFFF);
var msw = (x.lowOrder >>> 16) + (y.lowOrder >>> 16) + (lsw >>> 16);
var lowOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);

lsw = (x.highOrder & 0xFFFF) + (y.highOrder & 0xFFFF) + (msw >>> 16);
msw = (x.highOrder >>> 16) + (y.highOrder >>> 16) + (lsw >>> 16);
var highOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);

return new Int_64(highOrder, lowOrder);
};

/*
* Add four 64-bit integers, wrapping at 2^64. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*
* @private
* @param {Int_64} a The first 64-bit integer argument to be added
* @param {Int_64} b The second 64-bit integer argument to be added
* @param {Int_64} c The third 64-bit integer argument to be added
* @param {Int_64} d The fouth 64-bit integer argument to be added
* @return The sum of a + b + c + d
*/
var safeAdd_64_4 = function (a, b, c, d) {
var lsw = (a.lowOrder & 0xFFFF) + (b.lowOrder & 0xFFFF) +
(c.lowOrder & 0xFFFF) + (d.lowOrder & 0xFFFF);
var msw = (a.lowOrder >>> 16) + (b.lowOrder >>> 16) +
(c.lowOrder >>> 16) + (d.lowOrder >>> 16) + (lsw >>> 16);
var lowOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);

lsw = (a.highOrder & 0xFFFF) + (b.highOrder & 0xFFFF) +
(c.highOrder & 0xFFFF) + (d.highOrder & 0xFFFF) + (msw >>> 16);
msw = (a.highOrder >>> 16) + (b.highOrder >>> 16) +
(c.highOrder >>> 16) + (d.highOrder >>> 16) + (lsw >>> 16);
var highOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);

return new Int_64(highOrder, lowOrder);
};

/*
* Add five 64-bit integers, wrapping at 2^64. This uses 16-bit operations internally
* to work around bugs in some JS interpreters.
*
* @private
* @param {Int_64} a The first 64-bit integer argument to be added
* @param {Int_64} b The second 64-bit integer argument to be added
* @param {Int_64} c The third 64-bit integer argument to be added
* @param {Int_64} d The fouth 64-bit integer argument to be added
* @param {Int_64} e The fouth 64-bit integer argument to be added
* @return The sum of a + b + c + d + e
*/
var safeAdd_64_5 = function (a, b, c, d, e) {
var lsw = (a.lowOrder & 0xFFFF) + (b.lowOrder & 0xFFFF) +
(c.lowOrder & 0xFFFF) + (d.lowOrder & 0xFFFF) + (e.lowOrder & 0xFFFF);
var msw = (a.lowOrder >>> 16) + (b.lowOrder >>> 16) +
(c.lowOrder >>> 16) + (d.lowOrder >>> 16) + (e.lowOrder >>> 16) +
(lsw >>> 16);
var lowOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);

lsw = (a.highOrder & 0xFFFF) + (b.highOrder & 0xFFFF) +
(c.highOrder & 0xFFFF) + (d.highOrder & 0xFFFF) +
(e.highOrder & 0xFFFF) + (msw >>> 16);
msw = (a.highOrder >>> 16) + (b.highOrder >>> 16) +
(c.highOrder >>> 16) + (d.highOrder >>> 16) + (e.highOrder >>> 16) +
(lsw >>> 16);
var highOrder = ((msw & 0xFFFF) << 16) | (lsw & 0xFFFF);

return new Int_64(highOrder, lowOrder);
};

/*
* Calculates the SHA-1 hash of the string set at instantiation
*
* @private
* @param {Array} message The binary array representation of the string to hash
* @param {Number} messageLen The number of bits in the message
* @return The array of integers representing the SHA-1 hash of message
*/
var coreSHA1 = function (message, messageLen) {
var W = [];
var a, b, c, d, e;
var T;
var ch = ch_32, parity = parity_32, maj = maj_32, rotl = rotl_32,
safeAdd_2 = safeAdd_32_2, safeAdd_5 = safeAdd_32_5;
var H = [
0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0
];
var K = [
0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
0x5a827999, 0x5a827999, 0x5a827999, 0x5a827999,
0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1, 0x6ed9eba1,
0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc, 0x8f1bbcdc,
0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6,
0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6,
0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6,
0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6,
0xca62c1d6, 0xca62c1d6, 0xca62c1d6, 0xca62c1d6
];

// Append '1' at the end of the binary string
message[messageLen >> 5] |= 0x80 << (24 - messageLen % 32);
// Append length of binary string in the position such that the new length is a multiple of 512
message[((messageLen + 1 + 64 >> 9) << 4) + 15] = messageLen;

var appendedMessageLength = message.length;

for (var i = 0; i < appendedMessageLength; i += 16) {
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];

for (var t = 0; t < 80; t++) {
if (t < 16) {
W[t] = message[t + i];
} else {
W[t] = rotl(W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16], 1);
}

if (t < 20) {
T = safeAdd_5(rotl(a, 5), ch(b, c, d), e, K[t], W[t]);
} else if (t < 40) {
T = safeAdd_5(rotl(a, 5), parity(b, c, d), e, K[t], W[t]);
} else if (t < 60) {
T = safeAdd_5(rotl(a, 5), maj(b, c, d), e, K[t], W[t]);
} else {
T = safeAdd_5(rotl(a, 5), parity(b, c, d), e, K[t], W[t]);
}

e = d;
d = c;
c = rotl(b, 30);
b = a;
a = T;
}

H[0] = safeAdd_2(a, H[0]);
H[1] = safeAdd_2(b, H[1]);
H[2] = safeAdd_2(c, H[2]);
H[3] = safeAdd_2(d, H[3]);
H[4] = safeAdd_2(e, H[4]);
}

return H;
};

/*
* Calculates the desired SHA-2 hash of the string set at instantiation
*
* @private
* @param {Array} The binary array representation of the string to hash
* @param {Number} The number of bits in message
* @param {String} variant The desired SHA-2 variant
* @return The array of integers representing the SHA-2 hash of message
*/
var coreSHA2 = function (message, messageLen, variant) {
var W = [];
var a, b, c, d, e, f, g, h;
var T1, T2;
var H;
var numRounds, lengthPosition, binaryStringInc, binaryStringMult;
var safeAdd_2, safeAdd_4, safeAdd_5, gamma0, gamma1, sigma0, sigma1,
ch, maj, Int;
var K;

// Set up the various function handles and variable for the specific variant
if (variant === "SHA-224" || variant === "SHA-256") // 32-bit variant
{
numRounds = 64;
lengthPosition = ((messageLen + 1 + 64 >> 9) << 4) + 15;
binaryStringInc = 16;
binaryStringMult = 1;
Int = Number;
safeAdd_2 = safeAdd_32_2;
safeAdd_4 = safeAdd_32_4;
safeAdd_5 = safeAdd_32_5;
gamma0 = gamma0_32;
gamma1 = gamma1_32;
sigma0 = sigma0_32;
sigma1 = sigma1_32;
maj = maj_32;
ch = ch_32;
K = [
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2
];

if (variant === "SHA-224") {
H = [
0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
];
} else {
H = [
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
];
}
} else if (variant === "SHA-384" || variant === "SHA-512") {// 64-bit variant
numRounds = 80;
lengthPosition = ((messageLen + 1 + 128 >> 10) << 5) + 31;
binaryStringInc = 32;
binaryStringMult = 2;
Int = Int_64;
safeAdd_2 = safeAdd_64_2;
safeAdd_4 = safeAdd_64_4;
safeAdd_5 = safeAdd_64_5;
gamma0 = gamma0_64;
gamma1 = gamma1_64;
sigma0 = sigma0_64;
sigma1 = sigma1_64;
maj = maj_64;
ch = ch_64;

K = [
new Int_64(0x428a2f98, 0xd728ae22), new Int_64(0x71374491, 0x23ef65cd), new Int_64(0xb5c0fbcf, 0xec4d3b2f), new Int_64(0xe9b5dba5, 0x8189dbbc),
new Int_64(0x3956c25b, 0xf348b538), new Int_64(0x59f111f1, 0xb605d019), new Int_64(0x923f82a4, 0xaf194f9b), new Int_64(0xab1c5ed5, 0xda6d8118),
new Int_64(0xd807aa98, 0xa3030242), new Int_64(0x12835b01, 0x45706fbe), new Int_64(0x243185be, 0x4ee4b28c), new Int_64(0x550c7dc3, 0xd5ffb4e2),
new Int_64(0x72be5d74, 0xf27b896f), new Int_64(0x80deb1fe, 0x3b1696b1), new Int_64(0x9bdc06a7, 0x25c71235), new Int_64(0xc19bf174, 0xcf692694),
new Int_64(0xe49b69c1, 0x9ef14ad2), new Int_64(0xefbe4786, 0x384f25e3), new Int_64(0x0fc19dc6, 0x8b8cd5b5), new Int_64(0x240ca1cc, 0x77ac9c65),
new Int_64(0x2de92c6f, 0x592b0275), new Int_64(0x4a7484aa, 0x6ea6e483), new Int_64(0x5cb0a9dc, 0xbd41fbd4), new Int_64(0x76f988da, 0x831153b5),
new Int_64(0x983e5152, 0xee66dfab), new Int_64(0xa831c66d, 0x2db43210), new Int_64(0xb00327c8, 0x98fb213f), new Int_64(0xbf597fc7, 0xbeef0ee4),
new Int_64(0xc6e00bf3, 0x3da88fc2), new Int_64(0xd5a79147, 0x930aa725), new Int_64(0x06ca6351, 0xe003826f), new Int_64(0x14292967, 0x0a0e6e70),
new Int_64(0x27b70a85, 0x46d22ffc), new Int_64(0x2e1b2138, 0x5c26c926), new Int_64(0x4d2c6dfc, 0x5ac42aed), new Int_64(0x53380d13, 0x9d95b3df),
new Int_64(0x650a7354, 0x8baf63de), new Int_64(0x766a0abb, 0x3c77b2a8), new Int_64(0x81c2c92e, 0x47edaee6), new Int_64(0x92722c85, 0x1482353b),
new Int_64(0xa2bfe8a1, 0x4cf10364), new Int_64(0xa81a664b, 0xbc423001), new Int_64(0xc24b8b70, 0xd0f89791), new Int_64(0xc76c51a3, 0x0654be30),
new Int_64(0xd192e819, 0xd6ef5218), new Int_64(0xd6990624, 0x5565a910), new Int_64(0xf40e3585, 0x5771202a), new Int_64(0x106aa070, 0x32bbd1b8),
new Int_64(0x19a4c116, 0xb8d2d0c8), new Int_64(0x1e376c08, 0x5141ab53), new Int_64(0x2748774c, 0xdf8eeb99), new Int_64(0x34b0bcb5, 0xe19b48a8),
new Int_64(0x391c0cb3, 0xc5c95a63), new Int_64(0x4ed8aa4a, 0xe3418acb), new Int_64(0x5b9cca4f, 0x7763e373), new Int_64(0x682e6ff3, 0xd6b2b8a3),
new Int_64(0x748f82ee, 0x5defb2fc), new Int_64(0x78a5636f, 0x43172f60), new Int_64(0x84c87814, 0xa1f0ab72), new Int_64(0x8cc70208, 0x1a6439ec),
new Int_64(0x90befffa, 0x23631e28), new Int_64(0xa4506ceb, 0xde82bde9), new Int_64(0xbef9a3f7, 0xb2c67915), new Int_64(0xc67178f2, 0xe372532b),
new Int_64(0xca273ece, 0xea26619c), new Int_64(0xd186b8c7, 0x21c0c207), new Int_64(0xeada7dd6, 0xcde0eb1e), new Int_64(0xf57d4f7f, 0xee6ed178),
new Int_64(0x06f067aa, 0x72176fba), new Int_64(0x0a637dc5, 0xa2c898a6), new Int_64(0x113f9804, 0xbef90dae), new Int_64(0x1b710b35, 0x131c471b),
new Int_64(0x28db77f5, 0x23047d84), new Int_64(0x32caab7b, 0x40c72493), new Int_64(0x3c9ebe0a, 0x15c9bebc), new Int_64(0x431d67c4, 0x9c100d4c),
new Int_64(0x4cc5d4be, 0xcb3e42b6), new Int_64(0x597f299c, 0xfc657e2a), new Int_64(0x5fcb6fab, 0x3ad6faec), new Int_64(0x6c44198c, 0x4a475817)
];

if (variant === "SHA-384") {
H = [
new Int_64(0xcbbb9d5d, 0xc1059ed8), new Int_64(0x0629a292a, 0x367cd507), new Int_64(0x9159015a, 0x3070dd17), new Int_64(0x152fecd8, 0xf70e5939),
new Int_64(0x67332667, 0xffc00b31), new Int_64(0x98eb44a87, 0x68581511), new Int_64(0xdb0c2e0d, 0x64f98fa7), new Int_64(0x47b5481d, 0xbefa4fa4)
];
} else {
H = [
new Int_64(0x6a09e667, 0xf3bcc908), new Int_64(0xbb67ae85, 0x84caa73b), new Int_64(0x3c6ef372, 0xfe94f82b), new Int_64(0xa54ff53a, 0x5f1d36f1),
new Int_64(0x510e527f, 0xade682d1), new Int_64(0x9b05688c, 0x2b3e6c1f), new Int_64(0x1f83d9ab, 0xfb41bd6b), new Int_64(0x5be0cd19, 0x137e2179)
];
}
}

// Append '1' at the end of the binary string
message[messageLen >> 5] |= 0x80 << (24 - messageLen % 32);
// Append length of binary string in the position such that the new length is correct
message[lengthPosition] = messageLen;

var appendedMessageLength = message.length;

for (var i = 0; i < appendedMessageLength; i += binaryStringInc) {
a = H[0];
b = H[1];
c = H[2];
d = H[3];
e = H[4];
f = H[5];
g = H[6];
h = H[7];

for (var t = 0; t < numRounds; t++) {
if (t < 16) {
// Bit of a hack - for 32-bit, the second term is ignored
W[t] = new Int(message[t * binaryStringMult + i], message[t * binaryStringMult + i + 1]);
} else {
W[t] = safeAdd_4(gamma1(W[t - 2]), W[t - 7], gamma0(W[t - 15]), W[t - 16]);
}

T1 = safeAdd_5(h, sigma1(e), ch(e, f, g), K[t], W[t]);
T2 = safeAdd_2(sigma0(a), maj(a, b, c));
h = g;
g = f;
f = e;
e = safeAdd_2(d, T1);
d = c;
c = b;
b = a;
a = safeAdd_2(T1, T2);
}

H[0] = safeAdd_2(a, H[0]);
H[1] = safeAdd_2(b, H[1]);
H[2] = safeAdd_2(c, H[2]);
H[3] = safeAdd_2(d, H[3]);
H[4] = safeAdd_2(e, H[4]);
H[5] = safeAdd_2(f, H[5]);
H[6] = safeAdd_2(g, H[6]);
H[7] = safeAdd_2(h, H[7]);
}

switch (variant) {
case "SHA-224":
return [
H[0], H[1], H[2], H[3],
H[4], H[5], H[6]
];
case "SHA-256":
return H;
case "SHA-384":
return [
H[0].highOrder, H[0].lowOrder,
H[1].highOrder, H[1].lowOrder,
H[2].highOrder, H[2].lowOrder,
H[3].highOrder, H[3].lowOrder,
H[4].highOrder, H[4].lowOrder,
H[5].highOrder, H[5].lowOrder
];
case "SHA-512":
return [
H[0].highOrder, H[0].lowOrder,
H[1].highOrder, H[1].lowOrder,
H[2].highOrder, H[2].lowOrder,
H[3].highOrder, H[3].lowOrder,
H[4].highOrder, H[4].lowOrder,
H[5].highOrder, H[5].lowOrder,
H[6].highOrder, H[6].lowOrder,
H[7].highOrder, H[7].lowOrder
];
default:
return []; // This should near be reached
}
};

/*
* Returns the desired SHA hash of the string specified at instantiation
* using the specified parameters
*
* @param {String} variant The desired SHA variant (SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512)
* @param {String} format The desired output formatting (B64 or HEX)
* @return The string representation of the hash in the format specified
*/
this.getHash = function (variant, format) {
var formatFunc = null;
var message = strToHash.slice();

switch (format) {
case "HEX":
formatFunc = binb2hex;
break;
case "B64":
formatFunc = binb2b64;
break;
default:
return "FORMAT NOT RECOGNIZED";
}

switch (variant) {
case "SHA-1":
if (sha1 === null) {
sha1 = coreSHA1(message, strBinLen);
}
return formatFunc(sha1);
case "SHA-224":
if (sha224 === null) {
sha224 = coreSHA2(message, strBinLen, variant);
}
return formatFunc(sha224);
case "SHA-256":
if (sha256 === null) {
sha256 = coreSHA2(message, strBinLen, variant);
}
return formatFunc(sha256);
case "SHA-384":
if (sha384 === null) {
sha384 = coreSHA2(message, strBinLen, variant);
}
return formatFunc(sha384);
case "SHA-512":
if (sha512 === null) {
sha512 = coreSHA2(message, strBinLen, variant);
}
return formatFunc(sha512);
default:
return "HASH NOT RECOGNIZED";
}
};

/*
* Returns the desired HMAC of the string specified at instantiation using
* the key and variant param.
*
* @param {String} key The key used to calculate the HMAC
* @param {String} inputFormat The format of key, ASCII or HEX
* @param {String} variant The desired SHA variant (SHA-1, SHA-224, SHA-256, SHA-384, or SHA-512)
* @param {String} outputFormat The desired output formatting (B64 or HEX)
* @return The string representation of the hash in the format specified
*/
this.getHMAC = function (key, inputFormat, variant, outputFormat) {
var formatFunc = null;
var keyToUse = null;
var blockByteSize = null;
var blockBitSize = null;
var keyWithIPad = [];
var keyWithOPad = [];
var lastArrayIndex = null;
var retVal = null;
var keyBinLen = null;
var hashBitSize = null;

// Validate the output format selection
switch (outputFormat) {
case "HEX":
formatFunc = binb2hex;
break;
case "B64":
formatFunc = binb2b64;
break;
default:
return "FORMAT NOT RECOGNIZED";
}

// Validate the hash variant selection and set needed variables
switch (variant) {
case "SHA-1":
blockByteSize = 64;
hashBitSize = 160;
break;
case "SHA-224":
blockByteSize = 64;
hashBitSize = 224;
break;
case "SHA-256":
blockByteSize = 64;
hashBitSize = 256;
break;
case "SHA-384":
blockByteSize = 128;
hashBitSize = 384;
break;
case "SHA-512":
blockByteSize = 128;
hashBitSize = 512;
break;
default:
return "HASH NOT RECOGNIZED";
}

// Validate input format selection
if ("HEX" === inputFormat) {
// Nibbles must come in pairs
if (0 !== (key.length % 2)) {
return "KEY MUST BE IN BYTE INCREMENTS";
}
keyToUse = hex2binb(key);
keyBinLen = key.length * 4;
} else if ("ASCII" === inputFormat) {
keyToUse = str2binb(key);
keyBinLen = key.length * jsSHA.charSize;
} else {
return "UNKNOWN KEY INPUT TYPE";
}

// These are used multiple times, calculate and store them
blockBitSize = blockByteSize * 8;
lastArrayIndex = (blockByteSize / 4) - 1;

// Figure out what to do with the key based on its size relative to
// the hash's block size
if (blockByteSize < (keyBinLen / 8)) {
if ("SHA-1" === variant) {
keyToUse = coreSHA1(keyToUse, keyBinLen);
} else {
keyToUse = coreSHA2(keyToUse, keyBinLen, variant);
}
// For all variants, the block size is bigger than the output size
// so there will never be a useful byte at the end of the string
keyToUse[lastArrayIndex] &= 0xFFFFFF00;
} else if (blockByteSize > (keyBinLen / 8)) {
// If the blockByteSize is greater than the key length, there will
// always be at LEAST one "useless" byte at the end of the string
keyToUse[lastArrayIndex] &= 0xFFFFFF00;
}

// Create ipad and opad
for (var i = 0; i <= lastArrayIndex; i++) {
keyWithIPad[i] = keyToUse[i] ^ 0x36363636;
keyWithOPad[i] = keyToUse[i] ^ 0x5C5C5C5C;
}

// Calculate the HMAC
if ("SHA-1" === variant) {
retVal = coreSHA1(keyWithIPad.concat(strToHash), blockBitSize + strBinLen);
retVal = coreSHA1(keyWithOPad.concat(retVal), blockBitSize + hashBitSize);
} else {
retVal = coreSHA2(keyWithIPad.concat(strToHash), blockBitSize + strBinLen, variant);
retVal = coreSHA2(keyWithOPad.concat(retVal), blockBitSize + hashBitSize, variant);
}

return (formatFunc(retVal));
};
}